If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8.3(t)=-4.9t^2+30.5t+8.3
We move all terms to the left:
8.3(t)-(-4.9t^2+30.5t+8.3)=0
We get rid of parentheses
4.9t^2-30.5t+8.3t-8.3=0
We add all the numbers together, and all the variables
4.9t^2-22.2t-8.3=0
a = 4.9; b = -22.2; c = -8.3;
Δ = b2-4ac
Δ = -22.22-4·4.9·(-8.3)
Δ = 655.52
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-22.2)-\sqrt{655.52}}{2*4.9}=\frac{22.2-\sqrt{655.52}}{9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-22.2)+\sqrt{655.52}}{2*4.9}=\frac{22.2+\sqrt{655.52}}{9.8} $
| (6x4)=(8-2)• | | 9(m-3)=-45 | | 3x-1=3(5x+7) | | 2000=-2x^2+40x+20 | | 6n+18=54 | | 2x+5=1á | | 15+3x=105 | | 16-x^2-48=0 | | x/1+x=22 | | 489=-0.5x^2+36x-123 | | (58+x)-23=96 | | a=(B=120)/5 | | a=B=120/5 | | 15x+13x=112 | | 9x+7x=144 | | 3y/10(-5)=y/5(+5) | | 7(-1+r)=0 | | 15x+3=105 | | 1.8y=10.8y=1.8 | | 3(5x+7)=0 | | f(10)=3(10)-12 | | 3x+2=792 | | 4x+4=8x+4 | | 3.8x+4=2x | | 3y-4=8-4y | | 2x^2-60x+420=0 | | f(-5)=3(-5)-2 | | 4(4x+3)=19x+3x+3 | | 2x-3/3=-2 | | 3(x+1)+7=4x-3(2-x) | | (x=5)^2=14 | | 3/4(3x+6)−1/4(5x−24)=) |